If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4.9x^2+10x+45=0
a = -4.9; b = 10; c = +45;
Δ = b2-4ac
Δ = 102-4·(-4.9)·45
Δ = 982
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{982}=\sqrt{1*982}=\sqrt{1}*\sqrt{982}=1\sqrt{982}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-1\sqrt{982}}{2*-4.9}=\frac{-10-1\sqrt{982}}{-9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+1\sqrt{982}}{2*-4.9}=\frac{-10+1\sqrt{982}}{-9.8} $
| -1-(8/3)*(1x/4)=2 | | -1-(8/3)*(1/4x)=2 | | -1-8/3*(1/4x)=2 | | 13*(1y/6)-18=72 | | -5x+10=50x= | | 4x+5+6x-7=90 | | 4-4x=9-11x | | .5q^2=5q | | 7(3a-4)-1=14-8a | | 4x-4=9-11x | | 2.31b−4.37=4.17 | | 3x-5+16=2 | | f(-3)=-8(-3)-9 | | 0.4=1-(1-p)^2 | | 4=7/5x+10 | | f(-15)=4(-15) | | (6x-10)°=(4x+8)° | | 11-x=-2x+33 | | 49=625+x | | 18+3x=5x-4 | | -4(x+3)/4+5=45 | | 400=4w•w | | (3x)78=90 | | (3x)78=180 | | x-0,5x= | | 4s³+15s²+10s+4=0 | | 2j+–2=–18 | | (6x+23=) | | -2x=-2500 | | 250000=3025+x | | 4x2-16-168=0 | | 2025=3481+x |